Top.Mail.Ru

Последовательное и параллельное соединение аккумуляторов: правила, схемы и нюансы подключения

Содержание

Зачем соединять аккумуляторы в батарею

Для питания некоторых потребителей необходимо создать определенное значение напряжения, тока и емкости, которые невозможно иметь при использовании заводских устройств. Поэтому приходится использовать разнообразные методы комбинирования подключений. В результате соединения изделий в батареи можно добиться следующих результатов:

  • увеличение значение вольтажа;
  • увеличение диапазона рабочего тока;
  • повышение внутренней емкости.

Важно! При изменении значений тока, получают экономию энергозатрат, снижая потери на нагрев проводников.

Различное соединение аккумуляторов позволяет добиться разнообразных параметров, при этом следует помнить, что показание внутренней энергии при каждом подключении элементов будет иметь разные цифры.

Существует три варианта коммутации:

  • последовательное;
  • параллельное;
  • параллельно-последовательное.

При комплектовании устройства необходимо помнить, что запрещается применять источники питания разного вида, такое подключение может привести к преждевременному выходу из строя изделия.

Последовательное и параллельное соединение аккумуляторов

При работе систем наблюдаются омические потери напряжения. Эта та часть затраченной энергии, которая преобразуется в тепло, не давая полезной работы. Объединяя аккумуляторы определенным образом, можно уменьшить потери, увеличив КПД. Бывают случаи, когда для работы оборудования емкости одного гальванического элемента недостаточно. Покупать батарею большей емкости дорого, да и не всегда удобно (например, проблемы с размещением). Практичнее объединить два однотипных химических источника энергии.

Запросы по характеристикам питания в различных областях различны.

Имея одинаковые и однотипные аккумулирующие элементы легко их удовлетворить, соединяя источники в разных сочетаниях. Это дешевле и практичнее.

Последовательно или параллельно?

При последовательном соединении суммируется напряжение на всех аккумуляторах, при подключении нагрузки с каждого аккумулятора идет ток, равный общему току в цепи, в общем сопротивление нагрузки задает ток разряда. Это вы должны помнить со школы. Теперь самое интересное, емкость. Емкость сборки при таком соединении по хорошему равна емкости аккумулятора с самой маленькой емкостью. Представим, что все аккумуляторы заряжены на 100%. Смотрите, ток разряда у нас везде одинаковый, и первым разрядится аккумулятор с самой маленькой емкостью, это как минимум логично. И как только он разрядится, дальше нагружать данную сборку будет уже нельзя. Да, остальные аккумуляторы еще заряжены. Но если мы продолжим снимать ток, то наш слабый аккумулятор начнет переразряжаться, и выйдет из строя. То есть правильно считать, что емкость последовательно соединенной сборки равна емкости самого малоемкого, либо самого разряженного аккумулятора. Отсюда делаем вывод: собирать последовательную батарею нужно во первых из одинаковых по емкости аккумуляторов, и во вторых, перед сборкой они все должны быть заряжены одинаково, проще говоря на 100%. Существует такая штука, называется BMS (Battery Monitoring System), она может следить за каждым аккумулятором в батарее, и как только один из них разрядится, она отключает всю батарею от нагрузки, об этом речь пойдёт ниже. Теперь что касается зарядки такой батареи. Заряжать ее нужно напряжением, равным сумме максимальных напряжений на всех аккумуляторах. Для литиевых это 4.2 вольта. То есть батарею из трех заряжаем напряжением 12.6 в. Смотрите что происходит, если аккумуляторы не одинаковые. Быстрее всех зарядится аккумулятор с самой маленькой емкостью. Но остальные то еще не зарядились. И наш бедный аккумулятор будет жариться и перезаряжаться, пока не зарядятся остальные. Переразряда, я напомню, литий тоже очень сильно не любит и портится. Чтобы этого избежать, вспоминаем предыдущий вывод.

Перейдем к параллельному соединению. Емкость такой батареи равна сумме емкостей всех аккумуляторов в нее входящих. Разрядный ток для каждой ячейки равен общему току нагрузки, деленному на число ячеек. То есть чем больше акумов в такой сборке, тем больший ток она может отдать. А вот с напряжением происходит интересная вещь. Если мы собираем аккумуляторы, имеющие разное напряжение, то есть грубо говоря заряженные до разного процента, то после соединения они начнут обмениваться энергией до тех пор, пока напряжение на всех ячейках не станет одинаковым. Делаем вывод: перед сборкой акумы опять же должны быть заряжены одинаково, иначе при соединении пойдут большие токи, и разряженный акум будет испорчен, и скорее всего может даже загореться. В процессе разряда аккумуляторы тоже обмениваются энергией, то есть если одна из банок имеет меньшую емкость, остальные не дадут ей разрядиться быстрее их самих, то есть в параллельной сборке можно использовать аккумуляторы с разной емкостью. Единственное исключение – работа при больших токах. На разных аккумуляторах под нагрузкой по-разному просаживается напряжение, и между “сильным” и “слабым” акумом начнёт бежать ток, а этого нам совсем не нужно. И то же самое касается зарядки. Можно абсолютно спокойно заряжать разные по емкости аккумуляторы в параллели, то есть балансировка не нужна, сборка будет сама себя балансировать.

В обоих рассмотренных случаях нужно соблюдать ток зарядки и ток разрядки. Ток зарядки для Li-Io не должен превышать половины ёмкости аккумулятора в амперах (аккумулятор на 1000 mah – заряжаем 0.5 А, аккумулятор 2 Ah, заряжаем 1 А). Максимальный ток разрядки обычно указан в даташите (ТТХ) аккумулятора. Например: ноутбучные 18650 и аккумы от смартфонов нельзя грузить током, превышающим 2 ёмкости аккумулятора в Амперах (пример: акум на 2500 mah, значит максимум с него нужно брать 2.5*2 = 5 Ампер). Но существуют высокотоковые аккумуляторы, где ток разряда явно указан в характеристиках.

Промежуточным вариантом является переключение аккумуляторов из последовательного соединения в параллельное (для зарядки), что подробно рассмотрено в видеоролике ниже, а все схемы и ссылки на переключатели вы найдёте вот здесь https://alexgyver.ru/18650/

Последовательное соединение элементов.

При последовательном соединении элементов питания выделяются две схемы: последовательно-дополняющая и последовательно-препятствующая.
В последовательно-дополняющей схеме положительный вывод первого элемента питания соединяется с отрицательным выводом второго элемента питания; положительный вывод второго элемента питания соединяется с отрицательным выводом третьего элемента питания и т.д. (рисунок 3.11.)

Posledovatel'noe-soedinenie-elementov

Рисунок 3.11.Последовательное соединение элементов питания.

При таком соединении источников питания через все элементы будет течь одинаковый ток:

Iобщ=I1=I2=I3

Индексы в обозначениях токов указывают на номера отдельных источников питания (элементов или батарей питания)
А полное напряжение при последовательном соединении равно сумме напряжений (ЭДС) отдельных элементов:

Еобщ = Е1 + Е2 + Е3.

При последовательно-препятствующем включении источников питания, они соединяются друг с другом одноименными выводами. Но на практике такая схема не применяется или применяется, но очень редко.

Последовательное соединение аккумуляторов

Рабочее напряжение аккумуляторов может быть разным. Параметр колеблется в диапазоне — 0.5-48 Вольт. Если для запуска ДВС автомобиля, автономного питания электрооборудования или электроприводной спецтехники необходим другой диапазон, используют последовательное соединение аккумуляторов в единую цепь. Количество химических источников тока рассчитывается по характеристикам напряжения.

Принцип: объединяются разнополюсные клеммы гальванических элементов. Вывод «+» предыдущего источника соединяется с выводом «-» следующего. То есть вывод «+» первого элемента и вывод «-» последнего выводятся наружу. Они и будут анодом и катодом аккумуляторной батареи.

Предположим, что в цепи будут участвовать четыре 12-вольтных химических источников тока емкостью 200 А и мощностью 800 А*ч. При последовательном подсоединении суммарное напряжение аккумуляторной батареи будет равно 48 В, емкость батареи останется неименной.

Подобным способом объединяются химические источники тока в АКБ для автомобилей, автобусов и другой техники. Элементы упакованы в один корпус и объединены при помощи свинцовых шин. Из этого же материала изготавливают электроды элементов. Свинцовые части могут соединяться между собой не на механическом, а на молекулярном уровне, что предупреждает развитие коррозийных электрохимических реакций. Увеличен срок эксплуатации батареи.

Особенности последовательного подключения

  • Одновременно можно подключать любое количество гальванических элементов, но все они в цепи должны быть одинаковыми и однотипными. Например, литий-ионные соединяют с литий-ионными, но не кадмий-никелевыми.
  • Емкости всех химических источников тока должны быть одинаковыми (очень близкими по значению).
  • Нужна балансировка заряда при этом типе сборки. Она обеспечит длительный срок службы батареи без дополнительной подзарядки, безопасность ее эксплуатации. Можно применять активный и пассивный метод балансировки.
  • Если в цепи выходит из строя один аккумулятор, то менять придется все элементы.
  • Если использовано последовательное подключение аккумуляторов, то выбору зарядного устройства нужно уделить особое внимание. Лучше использовать приспособления с контроллером заряда.
  • Проводники должны выдерживать нагрузку в 3 раза превышающую номинальную.

Параллельное соединение элементов.

При параллельном соединении элементов питания, их одноименные выводы соединяются вместе, то есть плюс к плюсу, минус к минусу (рис 3.12).

Параллельное соединение элементов

Рисунок 3.11.Параллельное соединение элементов питания.

В этом случае общий ток будет равен сумме токов каждого элемента:

Iобщ=I1+I2+I3

Общее напряжение при параллельном включении источников питания будет равно напряжению каждого отдельного источника.

Еобщ = Е1 = Е2 = Е3.

Существует несколько способов параллельного соединения аккумуляторов

Способ 1

Оборудование подключено к положительному и отрицательному полюсам крайнего аккумулятора.

Обычно аккумуляторы соединяют между собой медным кабелем сечением 35 мм2 с удельным сопротивлением около 0,0006 Ом на метр. Таким образом сопротивление кабеля длиной 20 см между аккумуляторами будет 0,00012 Ом. Это очень мало, но если добавить 0,0002 Ом для каждого соединения (клемма на кабеле, клемма на аккумуляторе и т.д), то сопротивление возрастет до 0.0015 Ом.

Если нагрузка распределена между аккумуляторами равномерно, то при потребляемом токе 100 ампер, каждый из четырех аккумуляторов отдает по 25 ампер. Однако в рассматриваемой схеме самый большой ток отдает нижний аккумулятор, а ток каждого следующего постепенно уменьшается.

Это происходит потому, что ток идущий от нижнего аккумулятора не встречает на своем пути никакого сопротивления кроме сопротивления кабеля к нагрузке. Ток от второго снизу аккумулятора дополнительно проходит через два соединительных провода, от второго снизу через четыре и от самого верхнего через шесть. Таким образом, вклад верхнего аккумулятора в общий ток гораздо меньше, чем нижнего.

Подключения нагрузки к батарее параллельно соединенных аккумуляторов
Два способа подключения нагрузки к батарее параллельно соединенных аккумуляторов. Слева — неправильный. Справа правильный

Во время зарядки происходит тоже самое — нижний аккумулятор заряжается большим током чем верхний. Условия его работы тяжелее, и он выйдет из строя раньше.

Вычисления показывают, что при внутреннем сопротивлении аккумулятора 0,02 Ом, сопротивлении клемм 0,0015 Ом и нагрузке 100 ампер, возникает следующее распределение тока между аккумуляторами:

Нижний аккумулятор — 35,9 ампер.

Второй снизу — 26,2 ампер.

Третий снизу —  20,4 ампер.

Верхний аккумулятор —  17,8 ампер.

Таким образом, нижний аккумулятор обеспечивает вдвое больший ток чем верхний. Однако в два раза большая нагрузка нижнего аккумулятора не означает, что его срок службы вдвое меньше. По мере разряда нижнего аккумулятора, нагрузка перераспределяется между остальными тремя аккумуляторными батареями. Недостаток такого подключения в том, что батарея в целом эксплуатируется с огромным дисбалансом и стареет гораздо быстрее, чем при правильной балансировке.

Способ 2

При втором способе соединение аккумуляторов между собой остается прежним, но нагрузка подключается к разным аккумуляторам. Распределение тока в модифицированной батареи при нагрузке 100 А следующее:

Нижний аккумулятор –26,7 ампер.

Второй снизу —  23,2 А.

Третий снизу —  23,2 А.

Верхний аккумулятор — 26,7 ампер.

Улучшение по сравнению с первым методом существенное и аккумуляторы гораздо ближе к правильной балансировке.

Способ 3

Чем дороже тяговые аккумуляторы и чем ниже их внутреннее сопротивление, тем важнее точная балансировка. Для лучшего баланса необходимо, чтобы количество связей между каждым аккумулятором и нагрузкой было примерно одинаковым.

Способ параллельного соединения аккумуляторов
Еще один вариант параллельного соединения аккумуляторов.

В первом способе подключения ток от нижнего аккумулятора поступал в нагрузку без дополнительных соединений. Верхний аккумулятор имел 6 соединений. Во втором способе количество соединительных звеньев для верхнего и нижнего аккумуляторов уменьшилось до 3.

При третьем способе положительные клеммы каждого аккумулятора подключаются к общей шине. То же самое выполняют и для отрицательных полюсов. Длина проводников от аккумуляторных клемм до шины должна быть примерно одинаковой, в противном случае теряется одно из основных преимуществ такого способа подключения — равное сопротивление между каждым аккумулятором и нагрузкой.

Разница в результатах между третьим и вторым способом соединения намного меньше различий между 1-м и 2-м, но для 4-8 дорогостоящих аккумуляторов дополнительная работа может быть оправдана.

Меры предосторожности при подключении

Меры предосторожности при подключении

  • соблюдать правила безопасности при работе с электрическим током, одевать резиновые перчатки;
  • предупредить создание цепи прохождения электротока через человеческое тело;
  • избегать коротких замыканий;
  • не пренебрегать полярностью;
  • к клеммам АКБ голыми руками не прикасаться;
  • не собирать аккумуляторы, подключенные к нагрузкам (раздельно перепроверить каждый перед включением в цепь);
  • зарядное устройство нужно отключить перед тем, как подключать батарею;
  • применять инструменты с изолированными рукоятками;
  • не пренебрегать параметрами тока АКБ и нагрузки перед тем, как воспользоваться блоком;
  • соединительные контакты должны быть надежными и изолированными;
  • сборку защитить изоляционным корпусом от попадания влаги;
  • применять одинаковые аккумуляторы по параметрам, степени износа;
  • перед тем, как воспользоваться сборкой, протестировать ее на предмет некорректного соединения клемм.

При исправлении ошибок первоначально отсоединяют нагрузку (зарядное устройство), затем только проводят переделку блока.

Ошибки коммутации и их последствия

Самое главное — избежать поражения электротоком
. Некорректное объединение химических источников тока повлечет за собой:

  • Формирование короткозамкнутого контура. В гальванических элементах начнется химическая реакция, которая приведет к вытеканию электролита, короблению корпуса, взрыву, возгоранию (характерно для параллельного соединения).
  • Размыкание контура. Во время подключения нагрузки сгенерируется обратный электроток через некорректно подсоединенный источник. Это приведет к быстрому выходу из строя блока (характерно для последовательного соединения).
  • Продолжительное короткое замыкание. Результат — расплавление проводов, возгорание, коробление корпуса, химическая реакция внутри источников, воспламенение, утечка электролита и взрыв.
  • Кратковременное замыкание. Результат — снижение емкости, порча электродов.
  • Перегрев и оплавление проводников. Результат — короткое замыкание (если некорректно подобран проводник по сечению).

Чем измерять емкость аккумуляторов?

Мы уже привыкли к мнению, что для замера нужен Аймакс b6, а он стоит денег и для большинства радиолюбителей избыточен. Но есть способ замерить емкость 1-2-3баночного аккумулятора с достаточной точностью и дешево – простой USB-тестер

У меня было два тестера – синий и белый с проводом. Белый завышал ток на 15% (вместе с ним и емкость) а синий незначительно занижает. Может зависит от экземпляра, но я все же рекомендую синий хотя бы потому, что у него есть таймер времени заряда/разряда. А у белого только бесполезные ячейки памяти, которые не нужны.

Тестер начинает работать примерно от 2,8в и вплоть до 10-15ти без проблем, значит его можно питать напрямую от литиевого аккумулятора и он будет считать протекающий ток и емкость. Остается завести себе пару юсб-штекеров с выходом на голые провода или крокодилы, подключить аккумулятор на вход (обязательно через защиту!) а на выход поставить нагрузку. Например мощный резистор на 8-15ом (для одной ячейки и кратно больше для последовательных сборок) или кусок нихрома. Рекомендуемый ток разряда 300-500ma. Такой тестер даст результат емкости с погрешностью не более 5%. Для надежности можете в цепь разряда подключить мультиметр в режиме амперметра и сравнить реальный ток в показанием тестера, чтобы на будущее знать есть ли у него отклонение и сколько. С такой поправкой в голове точность будет та же что у Аймакса. Когда аккумулятор разрядится до отсечки и защита его отключит, тестер запомнит результат. Останется включить его любым другим источником питания чтоб посмотреть.

Мой экземпляр тестера дал мне результаты емкости, которые полностью до 10-20mah совпали с исследованиями серьезного дядьки, который использовал для этой же марки аккумулятора технику на десятки тысяч рублей. А еще фотографий такого процесса хватило в качестве доказательства для возврата стоимости аккумулятора 2s с нечестной емкостью =)

Источники

  • https://BatteryZone.ru/accumulator/posledovatelnoe-i-parallelnoe-soedinenie-akkumuljatorov
  • https://alexgyver.ru/lithium_charging/
  • http://www.sxemotehnika.ru/soedinenie-elementov-pitaniya-i-batarey.html
  • https://3batareiki.ru/akkumulyatory/soedinenie-akkumulyatorov-posledovatelno-i-parallelno
  • https://advanced-power.ru/knowledge/soedinenie-akkumulyatorov/

[свернуть]
Ссылка на основную публикацию
Похожие публикации

Спасибо!

Теперь редакторы в курсе.

Adblock
detector